1,460 research outputs found

    A Logical Approach to Cooperative Information Systems

    Get PDF
    ``Cooperative information system management'' refers to the capacity of several computing systems to communicate and cooperate in order to acquire, store, manage, query data and knowledge. Current solutions to the problem of cooperative information management are still far from being satisfactory. In particular, they lack the ability to fully model cooperation among heterogeneous systems according to a declarative style. The use of a logical approach to model all aspects of cooperation seems very promising. In this paper, we de®ne a logical language able to support cooperative queries, updates and update propagation. We model the sources of information as deductive databases, sharing the same logical language to ex- press queries and updates, but containing independent, even if possibly related, data. We use the Obj-U-Datalog (E. Bertino, G. Guerrini, D. Montesi, Toward deductive object data- bases, Theory and Practice of Object Systems 1 (1) (1995) 19±39) language to model queries and transactions in each source of data. Such language is then extended to deal with active rules in the style of Active-U-Datalog (E. Bertino, B. Catania, V. Gervasi, A. Ra aet a, Ac- tive-U-Datalog: Integrating active rules in a logical update language, in: B. Freitag, H. Decker, M. Kifer, A. Voronkov (Eds.), LBCS 1472: Transactions and Change in Login Databases, 1998, pp. 106±132), interpreted according to the PARK semantics proposed in G. Gottlob, G. Moerkotte, V.S. Subrahmanian (The PARK semantics for active rules, in: P.M.G. Apers, M. Bouzeghoub, G. Gardarin (Eds.), LNCS 1057: Proceedings of the Fifth International Con- ference on Extending Database Technology, 1996, pp. 35±55). By using active rules, a system can e ciently perform update propagation among di erent databases. The result is a logical environment, integrating active and deductive rules, to perform update propagation in a cooperative framework

    A Star in the Brainstem Reveals the First Step of Cortical Magnification

    Get PDF
    A fundamental question in the neurosciences is how central nervous system (CNS) space is allocated to different sensory inputs. Yet it is difficult to measure innervation density and corresponding representational areas in the CNS of most species. These measurements can be made in star-nosed moles (Condylura cristata) because the cortical representation of nasal rays is visible in flattened sections and afferents from each ray can be counted. Here we used electrophysiological recordings combined with sections of the brainstem to identify a large, visible star representation in the principal sensory nucleus (PrV). PrV was greatly expanded and bulged out of the brainstem rostrally to partially invade the trigeminal nerve. The star representation was a distinct PrV subnucleus containing 11 modules, each representing one of the nasal rays. The 11 PrV ray representations were reconstructed to obtain volumes and the largest module corresponded to ray 11, the mole's tactile fovea. These measures were compared to fiber counts and primary cortical areas from a previous investigation. PrV ray volumes were closely correlated with the number of afferents from each ray, but afferents from the behaviorally most important, 11th ray were preferentially over-represented. This over-representation at the brainstem level was much less than at the cortical level. Our results indicate that PrV provides the first step in magnifying CNS representations of important afferents, but additional magnification occurs at higher levels. The early development of the 11th, foveal appendage could provide a mechanism for the most important afferents to capture the most CNS space

    Phospholipase A 2 Modulates Different Subtypes of Excitatory Amino Acid Receptors: Autoradiographic Evidence

    Full text link
    Exogenous phospholipases have been used extensively as tools to study the role of membrane lipids in receptor mechanisms. We used in vitro quantitative autoradiography to evaluate the effect of phospholipase A 2 (PLA 2 ) on N -methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in rat brain. PLA 2 pretreatment induced a significant increase in Α-[ 3 H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([ 3 H]AMPA) binding in the stratum radiatum of the CA1 region of the hippocampus and in the stratum moleculare of the cerebellum. No modification of [ 3 H]AMPA binding was found in the stratum pyramidale of the hippocampus at different ligand concentrations. [ 3 H]-Glutamate binding to the metabotropic glutamate receptor and the non-NMDA-, non-kainate-, non-quisqualate-sensitive [ 3 H]glutamate binding site were also increased by PLA 2 pretreatment. [ 3 H]Kainate binding and NMDA-sensitive [ 3 H]glutamate binding were minimally affected by the enzyme pretreatment. The PLA 2 effect was reversed by EGTA, the PLA 2 inhibitor p -bromophenacyl bromide, and prolonged pretreatment with heat. Bovine serum albumin (1%) prevented the increase in metabotropic binding by PLA 2 . Arachidonic acid failed to mimic the PLA 2 effect on metabotropic binding. These results indicate that PLA 2 can selectively modulate certain subtypes of excitatory amino acid receptors. This effect is due to the enzymatic activity but is probably not correlated with the formation of arachidonic acid metabolites. Independent of their possible physiological implications, our results provide the first autoradiographic evidence that an enzymatic treatment can selectively affect the binding properties of excitatory amino acid receptors in different regions of the CNS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66358/1/j.1471-4159.1993.tb05843.x.pd

    Fever with perinasal and tongue lesions: A diagnostic challenge

    Get PDF
    The diagnosis may be challenging, and high suspicion index should be maintained in immunosuppressed patients with unusual mucocutaneous lesions, even in non-endemic areas for mucocutaneous leishmaniasis

    Loss of control as a transdiagnostic feature in obesity-related eating behaviours : a systematic review

    Get PDF
    Objective: Emerging evidence suggests that loss of control (LOC) may present as a common feature across disordered eating behaviours. However, there has been limited research on the transdiagnostic nature of LOC in this area. The primary aim of this study was to systematically review disordered eating behaviours and measures of LOC in clinical and non-clinical populations. Method: Electronic searches of the relevant databases were conducted. Selected articles were screened for eligibility and assessed for methodological quality. Results: Thirty-four studies met inclusion criteria. Findings demonstrated that LOC was associated with disordered eating behaviours across bariatric populations, eating disorder populations, and community populations. Specifically, LOC was associated with binge eating (subjective and objective episodes), grazing, night eating, and emotional or stress eating. Findings also revealed that LOC was inconsistently operationalised across studies, with varied approaches to measuring the construct. Conclusion: Overall, the findings from this review provide support for LOC as a transdiagnostic feature of disordered eating behaviours. Future studies should utilise robust multi-method assessments to measure the severity of LOC, which may provide greater insight into how LOC manifests across different eating disorder presentations

    Characteristics of dust event in East Asia : Focus on the Gobi Desert, and Mongolia regions

    Get PDF
    [ABSTRACT] This study investigated the effect of snow and vegetation covers on dust emission by the correlation analysis of strong wind frequency and dust emission frequency, where the strong wind is defined with a constant threshold 6.5 m/sec. This correlation should be high (low) where the variance of land surface environment is low (large). In addition to this idea, referring to the parameterizations of threshold wind speed by NDVI and snow cover fraction, we built four hypotheses as shown in section 3.1. However, our obtained results disagreed with these in many points, and this indicates problems in the current parameterizations. We will discuss the reasons of these disagreements and some methods will be proposed to clarify these problems

    Cellular Scaling Rules of Insectivore Brains

    Get PDF
    Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons), but the insectivore cerebellum shares scaling rules with primates (increasing isometrically). Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent, and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass

    GEO-RBAC : a spatially aware RBAC

    Get PDF
    Securing access to data in location-based services and mobile applications requires the definition of spatially aware access control systems. Even if some approaches have already been proposed either in the context of geographic database systems or contextaware applications, a comprehensive framework, general and flexible enough to cope with spatial aspects in real mobile applications, is still missing. In this paper, we make one step towards this direction and we present GEO-RBAC, an extension of the RBAC model to deal with spatial and location-based information. In GEORBAC, spatial entities are used to model objects, user positions, and geographically bounded roles. Roles are activated based on the position of the user. Besides a physical position, obtained from a given mobile terminal or a cellular phone, users are also assigned a logical and device independent position, representing the feature (the road, the town, the region) in which they are located. To make the model more flexible and re-usable, we also introduce the concept of role schema, specifying the name of the role as well as the type of the role spatial boundary and the granularity of the logical position. We then extend GEO-RBAC to cope with hierarchies, modeling permission, user, and activation inheritance
    corecore